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Experiments have shown that moderate turbulence levels can nearly double turbine blade stag-
nation region heat transfer. Data have also shown that turbine blade heat transfer is strongly
affected by the scale of turbulence as well as its level. In addition to the stagnation region, tur-
bulence is often seen to increase pressure surface heat transfer. This is especially evident at low
to moderate Reynolds numbers. Vane and rotor stagnation region, and vane pressure surface heat
transfer augmentation is often seen in a pre-transition environment. Rotor pressure surface aug-
mentation is often seen in a relaminarized post-transition environment. Accurate predictions of
transition and relaminarization are critical to accurately predicting blade surface heat transfer. An
approach is described which incorporates the effects of both turbulence level and scale into a CFD
analysis. The model for the effects of turbulence intensity and scale is derived from experimental
data for cylindrical and elliptical leading edges. Results using this model are compared with exper-
imental data for both vane and rotor geometries. There i1s a twofold purpose to these comparisons.
One is to illustrate that using a model which includes the effects of turbulence length scale improves
agreement with data. The second is to illustrate where improvements in the modeling are needed.
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Objectives

Account for Turbulence level and length
scale on turbine blade heat transfer

Compare measured and predicted vane &
rotor blade heat transfer

Compare predictions with and without
models to account for freestream
turbulence effects

ldentify areas where modeling
Improvements are needed
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Models Examined

1) No Augmentation
2) Smith & Kuethe — No length scale effect

3) Smith & Kuethe + Van Fossen — Length
scale modeled using Leading edge data

4) Ames model with Leading edge term
5) Ames model without Leading edge term
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Vanes

Name Re, X10% |Tu,% |L/C Description
Ames 0.5-0.8 1-20 |0.08-0.3 |[M,=0.17-0.27
Ames 0.5-2.0 1-20 10.07-0.23 |Incompressible
Thole 0.5&1.1 1-20 |0.08 Incompressible
Arts 0.5-20 1-6 > 0.05 Transonic
Rotors
Name Re, X10°® |Tu, % |L/C Description
Giel-1 0.5-0.87 |13 0.17 M,=0.56 - 0.8
Giel-2 0.4-3.8 13 0.17 M,=0.33-0.9
Arts 0.6-23 1-6 > 0.04 Transonic




€16¢1¢-700c—NL/VSVYN

6ET

Calculation procedure

2D Navier-Stokes (RVCQ3D) — Primarily
concerned with leading edge and pressure side

Two layer algebraic turbulence model

Freestream turbulence effects serve to augment
laminar viscosity

No augmentation when flow is turbulent

Length scale constant — No variation in length
with flow acceleration or deceleration
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Turbulence Augmentation Models

Smith and Kuethe model

VTu/VLam — CSKTUU_)/
Csk =0.164

Smith & Kuethe + Van Fossen’s Leading edge model

V1u | Viam = O3CSKTMU)/ (DLE /[43/3
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Ames — No Leading Edge effect
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Ames — With Leading Edge effect
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Variation in viscosity ratio with distance from surface
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Heat transfer coefficient for Ames No. 1 vane
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Stanton number for Ames No. 2 vane
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Heat transfer coefficient for Thole vane
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Heat transfer coefficient for Arts vane
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Preliminary Conclusions

*Incorporating a model for turbulence effects
improves agreement with data

Ames’s model without leading edge effect
showed the most promise

*Smith & Kuethe recalibrated using Van
Fossen’s data showed similar results
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Issues Identified

* Length scale variation with freestream
velocity not examined

*Variation of start or length of transition
with length scale not identified — May be
important in favorable pressure gradients.



